11 research outputs found

    OmniDrones: An Efficient and Flexible Platform for Reinforcement Learning in Drone Control

    Full text link
    In this work, we introduce OmniDrones, an efficient and flexible platform tailored for reinforcement learning in drone control, built on Nvidia's Omniverse Isaac Sim. It employs a bottom-up design approach that allows users to easily design and experiment with various application scenarios on top of GPU-parallelized simulations. It also offers a range of benchmark tasks, presenting challenges ranging from single-drone hovering to over-actuated system tracking. In summary, we propose an open-sourced drone simulation platform, equipped with an extensive suite of tools for drone learning. It includes 4 drone models, 5 sensor modalities, 4 control modes, over 10 benchmark tasks, and a selection of widely used RL baselines. To showcase the capabilities of OmniDrones and to support future research, we also provide preliminary results on these benchmark tasks. We hope this platform will encourage further studies on applying RL to practical drone systems.Comment: Submitted to IEEE RA-

    Chronic anemia: The effects on the connectivity of white matter

    Get PDF
    Chronic anemia is commonly observed in patients with hemoglobinopathies, mainly represented by disorders of altered hemoglobin (Hb) structure (sickle cell disease, SCD) and impaired Hb synthesis (e.g. thalassemia syndromes, non-SCD anemia). Both hemoglobinopathies have been associated with white matter (WM) alterations. Novel structural MRI research in our laboratory demonstrated that WM volume was diffusely lower in deep, watershed areas proportional to anemia severity. Furthermore, diffusion tensor imaging analysis has provided evidence that WM microstructure is disrupted proportionally to Hb level and oxygen saturation. SCD patients have been widely studied and demonstrate lower fractional anisotropy (FA) in the corticospinal tract and cerebellum across the internal capsule and corpus callosum. In the present study, we compared 19 SCD and 15 non-SCD anemia patients with a wide range of Hb values allowing the characterization of the effects of chronic anemia in isolation of sickle Hb. We performed a tensor analysis to quantify FA changes in WM connectivity in chronic anemic patients. We calculated the volumetric mean of FA along the pathway of tracks connecting two regions of interest defined by BrainSuite's BCI-DNI atlas. In general, we found lower FA values in anemic patients; indicating the loss of coherence in the main diffusion direction that potentially indicates WM injury. We saw a positive correlation between FA and hemoglobin in these same regions, suggesting that decreased WM microstructural integrity FA is highly driven by chronic hypoxia. The only connection that did not follow this pattern was the connectivity within the left middle-inferior temporal gyrus. Interestingly, more reductions in FA were observed in non-SCD patients (mainly along with intrahemispheric WM bundles and watershed areas) than the SCD patients (mainly interhemispheric)

    Magnetic characteristics of single-block and multi-block Nd-Fe-B permanent magnets at low temperature

    No full text
    Based on the intrinsic temperature dependence of permanent magnet (PM) materials, the changing magnetic characteristics of three Nd-Fe-B magnet configurations with temperature were studied. A single PM, a traditional permanent magnet guideway (PMG) with steel as the flux collector in the center of the guideway (PMG A), and a Halbach-type PMG (PMG B) were investigated in cooling experiments. Liquid nitrogen was used to cool the PM and the PMGs from room temperature to the low temperature of 77 K, while the temperature and magnetic field signals were collected simultaneously. The results show that, with the temperature decrease, both the single PM and PMGs have a significant increase in their magnetic fields, which reach peak values. The magnetic flux density of the traditional PMG A shows a more significant increase of 20.3%, while the growth rates of the single cylinder PM and PMG B are 11.1% and 8.4%, respectively. As the temperature drops below a certain value, a spin-reorientation effect takes place inside the PM and causes a rapid decline of the magnetic flux density. Finally, compared with the magnetic field value at room temperature, the magnetic field variation of the single PM, PMG A, and PMG B were 5.7% decrease, 4.3% increase, and 0.7% decrease, respectively. The results provide basic data on the variation of magnetic characteristics of PM and PMG with temperature and contribute to research on superconducting levitation systems

    Improved cerebrovascular reactivity mapping using coherence weighted general linear model in the frequency domain

    No full text
    Cerebrovascular reactivity (CVR) is a prognostic indicator of cerebrovascular health. Estimating CVR from endogenous end-tidal carbon dioxide (CO2) fluctuation and MRI signal recorded under resting state can be difficult due to the poor signal-to-noise ratio (SNR) of signals. Thus, we aimed to improve the method of estimating CVR from end-tidal CO2 and MRI signals. We proposed a coherence weighted general linear model (CW-GLM) to estimate CVR from the Fourier coefficients weighted by the signal coherence in frequency domain, which confers two advantages. First, it requires no signal alignment in time domain, which simplifies experimental methods. Second, it limits the GLM analysis within the frequency band where CO2 and MRI signals are highly correlated, which automatically suppresses noise and nuisance signals. We compared the performance of our method with time-domain GLM (TD-GLM) and frequency-domain GLM (FD-GLM) in both synthetic and in-vivo data; wherein we calculated CVR from signals recorded under both resting state and sinusoidal stimulus. In synthetic data, CW-GLM has a remarkable performance on CVR estimation from narrow band signals with a mean-absolute error of 0.7 % (gray matter) and 1.2 % (white matter), which was lower than all the other methods. Meanwhile, CW-GLM maintains a comparable performance on CVR estimation from resting signals, with a mean-absolute error of 4.1 % (gray matter) and 8 % (white matter). The superior performance was maintained across the 36 in-vivo measurements, with CW-GLM exhibiting limits of agreement of -16.7 % – 9.5 % between CVR calculated from the resting and sinusoidal CO2 paradigms which was 12 % – 209 % better than current time-domain methods. Evaluating of the cross-coherence spectrum revealed highest signal coherence within the frequency band from 0.01 Hz to 0.05 Hz, which overlaps with previously recommended frequency band (0.02 Hz to 0.04 Hz) for CVR analysis. Our data demonstrates that CW-GLM can work as a self-adaptive band-pass filter to improve CVR robustness, while also avoiding the need for signal temporal alignment

    Magnetic and levitation characteristics of bulk high-temperature superconducting magnets above a permanent magnet guideway

    No full text
    Due to the large levitation force or the large guidance force of bulk high-temperature superconducting magnets (BHTSMs) above a permanent magnet guideway (PMG), it is reasonable to employ pre-magnetized BHTSMs to replace applied-magnetic-field-cooled superconductors in a maglev system. There are two combination modes between the BHTSM and the PMG, distinguished by the different directions of the magnetization. One is the S-S pole mode, and the other is the S-N pole mode combined with a unimodal PMG segment. A multi-point magnetic field measurement platform was employed to acquire the magnetic field signals of the BHTSM surface in real time during the pre-magnetization process and the re-magnetization process. Subsequently, three experimental aspects of levitation, including the vertical movement due to the levitation force, the lateral movement due to the guidance force, and the force relaxation with time, were explored above the PMG segment. Moreover, finite element modeling by COMSOL Multiphysics has been performed to simulate the different induced currents and the potentially different temperature rises with different modes inside the BHTSM. It was found that the S-S pole mode produced higher induced current density and a higher temperature rise inside the BHTSM, which might escalate its lateral instability above the PMG. The S-N pole mode exhibits the opposite characteristics. In general, this work is instructive for understanding and connecting the magnetic flux, the inner current density, the levitation behavior, and the temperature rise of BHTSMs employed in a maglev system

    Anemia Increases Oxygen Extraction Fraction in Deep Brain Structures but Not in the Cerebral Cortex

    No full text
    Sickle cell disease (SCD) is caused by a single amino acid mutation in hemoglobin, causing chronic anemia and neurovascular complications. However, the effects of chronic anemia on oxygen extraction fraction (OEF), especially in deep brain structures, are less well understood. Conflicting OEF values have been reported in SCD patients, but have largely attributed to different measurement techniques, faulty calibration, and different locations of measurement. Thus, in this study, we investigated the reliability and agreement of two susceptibility-based methods, quantitative susceptibility mapping (QSM) and complex image summation around a spherical or a cylindrical object (CISSCO), for OEF measurements in internal cerebral vein (ICV), reflecting oxygen saturation in deep brain structures. Both methods revealed that SCD patients and non-sickle anemia patients (ACTL) have increased OEF in ICV (42.6% ± 5.6% and 30.5% ± 3.6% in SCD by CISSCO and QSM respectively, 37.0% ± 4.1% and 28.5% ± 2.3% in ACTL) compared with controls (33.0% ± 2.3% and 26.8% ± 1.8%). OEF in ICV varied reciprocally with hematocrit (r2 = 0.92, 0.53) and oxygen content (r2 = 0.86, 0.53) respectively. However, an opposite relationship was observed for OEF measurements in sagittal sinus (SS) with the widely used T2-based oximetry, T2-Relaxation-Under-Spin-Tagging (TRUST), in the same cohorts (31.2% ± 6.6% in SCD, 33.3% ± 5.9% in ACTL and 36.8% ± 5.6% in CTL). Importantly, we demonstrated that hemoglobin F and other fast moving hemoglobins decreased OEF by TRUST and explained group differences in sagittal sinus OEF between anemic and control subjects. These data demonstrate that anemia causes deep brain hypoxia in anemia subjects with concomitant preservation of cortical oxygenation, as well as the key interaction of the hemoglobin dissociation curve and cortical oxygen extraction

    Cerebral blood flow and predictors of white matter lesions in adults with Tetralogy of Fallot

    No full text
    Long-term outcomes for Tetralogy of Fallot (TOF) have improved dramatically in recent years, but survivors are still afflicted by cerebral damage. In this paper, we characterized the prevalence and predictors of cerebral silent infarction (SCI) and their relationship to cerebral blood flow (CBF) in 46 adult TOF patients. We calculated both whole brain and regional CBF using 2D arterial spin labeling (ASL) images, and investigated the spatial overlap between voxel-wise CBF values and white matter hyperintensities (WMHs) identified from T2-FLAIR images. SCIs were found in 83% of subjects and were predicted by the year of the patient's first cardiac surgery and patient's age at scanning (combined r2 0.44). CBF was not different in brain regions prone to stroke compared with healthy white matter
    corecore